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Abstract—With the Internet of Things, sensors are becoming
ever more ubiquitous, but interacting with them continues
to present numerous challenges, particularly for applications
running on resource-constrained devices like smartphones. The
SOUL abstractions in this paper address two issues faced
by such applications: (1) access to sensors with the levels of
convenience needed for their ubiquitous, dynamic use, and only
by parties authorized to do so, and (2) scalability in sensor
access, given today’s multitude of sensors. Toward this end,
SOUL, first, introduces a new abstraction for the applications to
transparently and uniformly access both on-device and ambient
sensors with associated actuators. Second, potentially expensive
sensor-related processing needs not just occur on smartphones,
but can also leverage edge- and remote-cloud resources. Finally,
SOUL provides access control methods that permit users to easily
define access permissions for sensors, which leverages users’
social ties and captures the context in which access requests
are made. SOUL demonstrates that the applications on Android
platforms can scale the use of 100s of sensors with performance
and energy efficiency.

I. INTRODUCTION

Recent high-end smartphones have more than 10 embedded

sensors, and there are already 6 sensors on average in roughly

30 to 40% of today’s mobile phones [1], [2]. A similar trend

is seen for emergent wearable devices. Mirroring the growth

in device-level sensors, there is also an increasing presence of

sensors in users’ external environments like homes, cars, or

entertainment. Tesla’s Model S, for example, has 12 sensors,

and Google’s driverless car is known to use at least 6 sensors

just for its obstacle detection unit. Smart homes can have

1000s of sensors for providing home security, automation, and

entertainment [3].

This paper addresses the challenges faced by mobile ap-

plications (apps) that seek to leverage and use the dynamic

sets of sensors present on mobile devices and in the envi-

ronments where they operate. The issues faced by such apps

are (i) the diverse nature of sensors, reflected in the need to

use per-sensor protocols for interacting with them; (ii) the

computational and data management challenges in interacting

with sensors, particularly for applications running on resource-

constrained end devices like smartphones; (iii) the dynamic

nature of sensor presence because users move in and out of

their proximity and run applications requiring their dynamic

access; and (iv) the access privilege of sensor-collected data

that possibly include sensitive data of users.

In order for such apps to efficiently interact with and

manage the dynamic sets of currently accessible sensors with

the associated actuators and software services, SOUL (Sensors

Of Ubiquitous Life)

• externalizes sensor & actuator interactions and process-
ing from the resource-constrained device to edge- and

remote-cloud resources, to leverage their computational and

storage abilities for running the complex sensor processing

functionality;

• automates reconfiguration of these interactions when

better-matched sensors and actuators become physically

available;

• supports existing sensor-based applications allowing

them to use SOUL’s capabilities without requiring modi-

fications to their code; and

• authorizes sensor access at runtime to gain protected

and dynamic access for applications to sensors controlled

by certain end users.

The functionalities listed above are obtained via the SOUL
aggregate abstraction, which is a single point of access to

sensors as well as actuators, and software services for the

apps. This abstraction is realized by leveraging edge cloud
infrastructure–in our case, the PCLOUD [4] system–to ef-

ficiently run SOUL aggregate functionality. The outcome is

that with SOUL, computationally or storage-intensive data

management and processing tasks for sensors can be exter-

nalized from the smartphones to run anywhere in the edge or

remote cloud. For such actions, sensor and resource accesses

are guided by dynamic access permissions.

Key to SOUL’s aggregate abstraction is the insight that

sensors along with actuators and services can efficiently be

virtualized by the capabilities from edge clouds to create

a new high-level abstraction so as to provide apps with a

consistent and convenient access to them. Apps interact with

such an abstraction presented as a single point of access for

various sensor-related resources. SOUL manages the diverse

nature and dynamic presence of current physical sensors and

virtualizes them in the exactly same way that Android provides

apps with sensors. In doing so, SOUL can supports the existing

applications without requiring them to be reprogrammed.

While SOUL transparently supports existing apps, new apps

with the SOUL API can fully utilize SOUL’s features. For

example, SOUL’s automated reconfiguration actions can shield
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apps from the need to understand what physical sensors are

currently accessible. Further, the apps do not need to run

processing raw data of sensors on resource- and energy-

constrained smartphones. Instead, resources from edge and

remote clouds can be leveraged to carry out these computation-

ally expensive tasks, and SOUL can run the potentially costly

tasks required for sensor interaction on behalf of smartphones.

Finally, with the enormous number of sensors with which

the apps can interact, SOUL helps users easily set up access

privileges for their own sensors when users share their sensors

with others. Ensuring safe and secure sharing in SOUL can

be achieved by the different access privileges granted to

individual sensors.

The evaluations in this paper show with SOUL, a single app

can interact with 100s of physical sensors alongside associated

actuators and services while minimizing the impact on a

device’s battery life and performance. An app from Google

Play Store see reductions of up to 95.4% in access latencies for

on-device sensors compared with Android sensor framework.

The remainder of the paper is organized as follows. The cur-

rent usage of sensors in mobile apps is explained in Section II.

SOUL-enabled use cases are shown in Section III. The design

and implementation of SOUL appear in Sections IV, and V,

respectively. Experimental results are in Section VI. Related

work is in Sections VII. Section VIII describes conclusions

and future work.

II. SENSOR USE IN MOBILE APPS

With the advent of a world of a trillion sensors and

mobile devices, a new class of applications has been predicted

to emerge, providing end users with personalized services

based on the precise capture of their current contexts and

intents. Those apps, however, must actively interact with the

numerous sensors present on mobile devices and in their

current environments. Unfortunately, today’s reality is that

most mobile apps use only a few physical sensors, despite

the fact that the devices hosting such apps are themselves

sensor-rich. Estimates [1], [2] are that apps using at least one

sensor in Android devices are just 0.5% of all available apps in

2012. This section describes more precisely the current status

of how apps interact with sensors, enhanced with our own

comprehensive study of current apps’ sensor use.

A. Background
Android provides apps with the Android sensor framework

in the android.hardware package, which is a principal means

for apps to access raw data from on-device sensors. With the

Android sensor API, applications must manually interact and

explicitly deal with individual sensor’s operations including

availability check. What aggravates the situation is that in

Android, sensor availability and operation methods quietly

vary, depending upon manufacturers, device models from the

same manufactures, and even on Android versions installed in

the same device. Thus, complexity in sensor use goes beyond

apps’ innate functionality, which is one of our motivations. We

next delve more deeply into the mobile app ecosystem and its

TABLE I: The most commonly used sensors.

Sensor Permission Counts(top100, 5K) Counts(750K)

accelerometer 66 13192
compass 15 2391
proximity 8 432
gyroscope 6 1211

current use of on-device and ambient sensors.

B. Mobile App Analysis
1) Methodology

We created a set of tools inspired by recent studies( [5], [6],

[7]) to automatically download and analyze nearly one million

apps from the Google Play Store. Those tools scrutinize apps’

bytecodes and manifest files to see how such apps behave on

the Android platform. Our initial study used the top 100 apps

in each category on the Google Play Store, resulting in a total

of 5,000 apps (on May 20, 2015). We then expanded it to

almost all free apps in the Store (750K out of the entire 1.2

million apps on May 20, 2015).

2) Sensor Usage in Current Apps
For the top 100 apps (in each category of Google Play

Store), 81 out of 5000 (1.62%) use at least one sensor. This

constitutes only a small increase over the previous estimate of

0.5% reported in 2012. Our more extensive survey of 750K

apps does not show any notable differences from the top 100

apps, with 1.92% of those apps using at least one sensor.

Further, for apps using sensors, most of them (84%) only

use a single sensor despite the multiple on-device sensors

available to apps. In addition, for both cases (top100, 750K),

the accelerometer is the most commonly used sensor, followed

by the compass (see Tables I).

3) Discussion of Study Outcomes
Evident from the statistics reported above is the fallacy of

recent predictions that mobile devices will naturally become

hubs in a sensor-rich world. While it remains unclear why

today’s apps do not actively leverage even the potential utility

of the sensors on their own devices, the industry have raised

issues ([1], [2], [8], [9]) regarding this matter as follows: (i)

device manufacturers may define different ways of accessing

the same sensor, sometimes even for different generations of

the same products, and (ii) app developers seeking to use

sensors have to handle different sensor vendors and their

diverse products. Consequently, (i) and (ii) cause apps that

seek backward compatibility to forgo using such sensors.

SOUL reacts to those issues by improving ease of use for

on-device and nearby sensors as follows: (i) tackling fragmen-

tation via a common sensor API (Section V), with backward

compatibility, (ii) providing dynamic, protected access to the

sensors present in a device’s current external environment

(Section IV-B1).

III. SOUL SENSOR APPLICATIONS

This section describes (1) how SOUL supports and aug-

ments existing apps as well as Android internal services in

their sensor use, and (2) how it presents opportunities for new

kinds of apps that easily interact with sensors and use nearby

156



and cloud resources to process their data.

A. Supporting Existing Apps
New and additional sensors can be used without modifying

existing app, whether those sensors are embedded in the

Android device or are accessible remotely.

1) Augmenting Existing Apps & Services
SOUL assists apps by automatic reconfiguration of the

mapping between new physical sensors and actuators in a

certain SOUL aggregate used by these apps. In fact, this func-

tionality is available even to Android system services like its

notification service as well as apps. We demonstrate the utility

of this functionality with a the novel SOUL service termed

‘Everything Follows Me’ as an Android system service (a

daemon in Unix-like system), which hooks up all interactions

between Android system services and apps to create a SOUL

aggregate. Along with SOUL’s reconfiguration feature, this

service can offer a continuous media app experience even in

the case that a user’s context (i.e., location) is changed without

the app having to keep track of it.The actuators of the media

app consists of an adjacent loudspeaker and screen like those

present in a home media system and an LED indicator built

via an Intel Galileo board to forward all notifications emitted

by the Android notification service.

The Spotify [10] app, with the ‘Everything Follows Me’ ser-

vice, interacts with end users via whatever display screen and

speakers are close to the user’s current location. In addition,

the user need not be concerned about missing out on other

important Android notifications since the ‘Everything Follow

me’ service serves for Android internal notification service,

e.g., to notify the user about an incoming text messages via

the LED also present in each room. SOUL enables Spotify

to interact with edge-cloud-controlled sensors and actuators

without requiring the app to be modified. In other words,

forwarding is done both for the display/sound used by Spotify

and for notifications.

B. Prototype SOUL Applications
We now presents how SOUL creates opportunities for new

kinds of apps that easily interact with sensors and use edge-

and remote-cloud resources to efficiently process their data.

1) PoD: Processing on Demand
An important property of the SOUL is its ability to use

nearby and cloud resources for potentially expensive sensor

processing activities. Raw sensor data must typically be pro-

cessed for meaningful use by apps, but such processing can be

expensive, quickly draining a device’s battery or exceeding its

processing abilities. To address this, the SOUL API permits

apps to encapsulate their sensor processing code into Javascript

as a part of SOUL aggregates. Since it is the SOUL aggregate

running these code, they can be run anywhere. i.e., not just

as the code embedded in the app, but as the code running

on any of the edge-cloud resources available to SOUL. We

demonstrate this functionality with an app deploying a Kalman

filter [11] to produce a statistically best estimate of sensor data:

the app creates its SOUL aggregate with the filter code and

executes the aggregate on edge-cloud resources.

2) Composing SOUL Aggregates
A common app need is to combine and make use of multiple

sensors/actuators in a uniform way to realize some desired

app-level functionality. This motivates the ‘sensor/actuator

groups’ in SOUL aggregates, where each aggregate can group

and operate on multiple such groups. We demonstrate this

functionality with an app that permits end users to check the

current time on their smartphone, but without turning on the

smartphone’s battery-consuming screen. This ‘Don’t turn on

the screen’ app uses a SOUL aggregate with access to a home

and smartphone camera , and a phone’s speaker, along with

a finger-gesture recognition software service running on the

edge cloud: if the home camera sees the user approaching the

smartphone, the camera triggers a camera on the smartphone

to check if the user does with two fingers. Two-finger gesture

is interpreted as a desire to check time vs. the user grasping the

entire phone, and the response is the phone’s speaker stating

the current time, without unlocking and activating the screen,

thus conserving phone power. Once the app defines this SOUL

aggregate via the SOUL Activity class, SOUL operates the

aggregate without app’s interventions.

3) Comprehensive Health Aggregate
A future SOUL app could implement a ‘health aggregate’.

This app would allow mobile devices to become hubs for

health-related information about the device owner [12], [13].

For example, it could collect data such as blood sugar level

measured by wearable devices (e.g., health bracelets), or from

an exercise bike used by the owner in a gym. Analytic services,

part of the SOUL aggregate, would immediately raise alarms

if unusual readings are detected from the SOUL aggregate’s

virtual sensors. In addition, they can interact with a cloud-

resident service to compute long term health statistics, and

implement a dashboard. We offer this application example

to show the capabilities of multiple SOUL aggregates, and

exercising SOUL’s dynamic authorization service (e.g., when

accessing the health club bicycle sensors); all driven by the

SOUL engine.

IV. SOUL DESIGN

SOUL consists of two main building blocks: (1) the SOUL
Core built on the edge clouds, which processes sensor-

related operations requested by the SOUL Engine, and (2)

the SOUL Engine on user’s device managing all sensor-

related operations required by apps as a part of the Android

platform. Connections between the two are enabled by SOUL

Streams. The current SOUL is built on the PCLOUD edge-

cloud infrastructure, and includes SOUL’s sensor datastore,

access control methods, and resource management.

Apps use SOUL functionality to access sensor data, control

sensors and actuators, and to run software services via the

SOUL’s aggregate abstraction. Specifically, with the aggregate

abstraction, the apps can create consistent points of access

regardless of where components encapsulated in a certain

aggregate are physically located. Figure 1 overviews SOUL’s

design, described in more detail next.
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Fig. 1: SOUL Design

A. Design Principles
This section presents design principles for the SOUL mid-

dleware. The SOUL Core and Engine continue to guide more

detailed architecture design and implementation on Android

and PCLOUD .

1) Logical Decoupling
SOUL virtualizes the physical sensors, actuators and ser-

vices to combine them into a single aggregate. Uniform APIs

for such an aggregate can replace the custom APIs offered

by specific physical sensors, actuators, and services. SOUL

aggregate also provides flexibility for exactly crafting the ab-

stractions desired by apps. For instance, for sensor processing

requiring both current and past sensor data [14], with SOUL,

sensor data can first be placed into a sensor storage service,

the Sensor Datastore, and SOUL aggregates obtain data from

that storage service rather than from physical sensors. Such

intermediate sensor data storage permits data regularization

and/or time series-based data use [15] and construction of

entirely new sensor types from several physical sensors [16].

2) Flexible Service Execution
Ample previous work demonstrating the need for flexi-

bility in sensor data processing ranges from early results

on runtime adaptation for sensor processing( [17], [18]) to

recent work on novel edge cloud functionality [14] and on

cloud offloading [19]. Leveraging such results and akin to

first storing sensor data in a storage service before delivering

it to apps, SOUL offers flexibility in where an aggregate

performs its sensor processing: on the sensor itself, on the

platform running the app, or on cloud processing resources.

SOUL obtains such functionality by interacting with edge

cloud infrastructures( [4], [20], [21], [22]), via its translation
layer shown in Figure 1. We currently use PCLOUD [4] as

an edge-cloud infrastructure, but translation layers for others

are straightforward to implement.

3) Compatibility with Existing Android Apps
Apps currently using device-level sensors should be able to

continue to run, interacting with SOUL without the need to

modify their codes. SOUL addresses this issue by exporting

illusions of the physical sensors with which the apps interact.

The apps should be able to access such illusions by Android

Sensor Framework. This differentiates SOUL from previous

work supporting only new applications written for their new

APIs such as GSN [15] and RTDroid [23].

B. SOUL Core
The SOUL Core is comprised of three modules interfaced

with the underlying edge cloud. The first is the reference

monitor enables dynamic permissions to sensor data based on

fine-grained access control policies by collaborating with the

policy generator. Second, the Sensor Datastore interacts with

physical sensors to collect and store their data into an underly-

ing time-series database. Lastly, the resource manager makes

decisions concerning the offloading of sensor management and

processing from resource-poor devices to the edge or remote

cloud. As PCLOUD natively supports sandboxing methods, it

can better control the execution of app-provided, potentially

complex and time-consuming sensor processing codes on local

or remote resources in a secure way.

1) Reference Monitor
SOUL enforces access permissions to ambient or nearby

sensors when apps use sensors. For instance, a ‘digital neigh-

borhood watch’ app like the one described in [4], which

will need access not only to a single home’s sensors like

home cameras, smoke detectors, and intrusion sensors, but

also to those in or around other homes in the neighborhood,

to implement safety and notification functions for homeowners

and other authorized personnel.

Mitigating privacy and security risks should be prioritized

when apps access sensors because sensors often collect very

sensitive and private data. On the other hand, sharing sensor

data is also inevitable [24] to maximize benefit to users. To

reconcile those conflicts, SOUL assists users to easily set

up their own access control policy via its reference monitor

along with policy generator. The reference monitor enforces

fine-grained access policy for each invoked sensor while the

policy generator provides the sensor owners with an easy

way to construct such policies. The access control policies

are realized with following design goals in mind. (i) SOUL

aggregates can export only and precisely the data needed by

an app ( [25], [26]); (ii) sensor owners can define fine-grain

permissions for apps to use certain SOUL aggregates [27];

and (iii) SOUL assists owners in creating access policies

with automation support that leverages their social network

services; and finally, (iv) a sandboxing mechanism is used to

safely execute app-provided codes on remote resources that

process sensor data [28].

Access controls driven by the reference monitor begin with

mutual authentication activities between two principals, i.e., a

user running an app and the owner of sensors that the app tries

to access. In SOUL, those activities involve a Facebook-based

app installed by the user on her Facebook account and a trust

key server. After authentication, for every request to a sensor,

the reference monitor should check its access permissions and
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provide the sensor access only if it is permitted. To do so,

SOUL uses discretionary access control [29], implemented

via cryptographically protected capabilities for all sensors.

The access rules, i.e., policies, realized in this fashion are

formulated by resource owners to control who (i.e., some

principal) is authorized to access certain operations associated

with the sensors in question. There are explicit operations

for creating policies, granting and revoking access rights, and

restricting delegation. An example is the glance operation in

SOUL as dynamic methods for access control, thus enabling

such apps to address the security and privacy issues arising

for shared sensing (and sensor processing).

Glance. Access controls can be used to permit or disable

sensor access, but by controlling which app can use which

operations on resources managed by SOUL, it becomes pos-

sible to make finer grain decisions that can mitigate the risks

to privacy inherent in permitting others to view data from

personal sensors. SOUL handles this via the two distinct

operations, read vs. glance, which export different granularity

of data to different invokers. That is, if an app without proper

privileges invokes a read on a sensor, that access will not be

granted, but the app may succeed with its glance requests. The

same app with glance from different users will see different

set of data from the same sensor (e.g., only overall trends vs.

detailed sensor data).

2) Policy Generator
While fine-grain protection is important, it is difficult to

formulate and express such protection policies in environments

targeted by SOUL [27]. We address this issue by providing to

resource owners a runtime policy generator for access per-

missions, leveraging the wealth of information about potential

principals available on social networks and data about the

current context in which the request is made [30]. SOUL

assumes that the owners are willing to share their resources

with those who are closed to them in the real world. In

Sociology, such people are referred to as having a strong

social tie with the owners [31]. This tie, however, is hard

to measure in the real world to construct access policies.

Hence, the policy generator leverages recent studies proposing

certain models [32] for predicting such social ties from the

interactions observed in an Social Network Service (SNS) like

Facebook. For the relationships that are unable to be captured

by the SNS, it refers to the context in which a request is

made. The SNS information helps the service predict the real

strength of social ties, and the context information captures the

situation that goes beyond social ties, which means that their

complementary nature can lead to a more accurate policy. The

owners can accept or customize given polices to make their

own ones.

Social Network Service. Recent studies [32], [33] present

models that predict actual social relationships, social ties, from

the interactions between participants observed in SNS. Such

models derive predictive variables from SNS and then use

them to estimate the strength of social ties in the real world.

SOUL adopts this approach by (i) periodically inspecting

users’ SNS interactions and then (ii) using these observations

to predict their social ties to other individuals with which they

interacts. This prediction, then, is the basis for constructing a

set of templates for access permissions to the their resources.

Users can use these templates for making final decisions about

granting access permissions.

Context Information. An SNS can capture many, but not all

social relationships relevant to access to SOUL aggregates.

Additional information of value for deciding on access per-

missions include the context in which access requests are

made and the intent behind making those requests [34]. A user

may be visiting a gym, for instance, wishing a trainer to have

temporary access to her/his personal health sensor. In SOUL,

such context information [35] is captured with SOUL-specific

data that can include access to the user’s online calendar (e.g.,

gym appointments), SNS events, and physical sensors like the

user’s GPS location via a smartphone [30], [36].

3) Sensor Datastore
As stated earlier, sensor data is first placed into the store,

then pre-processed to provide apps with different ways to

access and use that data. In particular, upon an app’s access to

some sensor, the sensor datastore constructs a SOUL stream

to transfer sensor data (in the form of SOUL aggregates)

from the SOUL Engine to the SOUL Core that ultimately,

provides sensor data to apps. By doing so, the SOUL allows

apps to combine multiple sensors as well as actuators into

a higher-level abstraction, to make it easy for apps to scale

in terms of the numbers of sensors with which they interact

and in terms of the degrees of required sensor processing.

For example, if an application desires a time-series sensor, the

store manager reads the corresponding sensor data and bundles
time stamps with that data. It can then make available to the

app an appropriate new kind of a sensor (e.g., sensor data

along with time stamps). The datastore includes the following

operations.

GroupBy. The datastore offers the app with the groupBy
operation to group individual sensors based on app-desired

properties. Typical properties used in groupBy are those based

on sensor location, type, etc. The outcome is that apps interact

with a single point of control, for any such set of sensors with

associated actuators and services, thus making it easy for an

app to see and control them.

Filter. With filter, apps can receive only the data that meets

their criteria, expressed e.g., as time windows or sampling

rates.

Bundle. The bundle operation can provide additional metadata

like time stamps and sensor locations, to enable apps to

utilize the sensor data without additional, extraneous sensor

or datastore interactions. Applications are also able to define

a new type of metadata bundling the existing ones to reduce

effort on creating and managing them by the applications.

Reconfigure. If an initial configuration of a SOUL aggregate

must be changed because, say, a user moves to a new location,

newly available sensors may be seamlessly added to the ag-

gregate and others may be removed. The reconfigure operation

shields apps from such dynamics in the environments in which

they operate, resulting in seamless SOUL use across changes
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in time, location, or even with physical sensor failure.

4) Remote Sensor Management & Processing
The descriptions above make clear that SOUL aggregates

may require a wide array of services that implement the

rich sensor data processing methods needed by applications.

There are two ways to implement such services: (i) by

utilizing services already present in the edge cloud [4], or

(ii) by dynamically extending a SOUL aggregate via app-

defined methods in JavasScript for processing the data from

sensors in the aggregate. Section III-B1 describes it in more

details. To enrich sensor processing by leveraging edge cloud’s

capabilities, SOUL permits dynamic extension to allow apps

to run their own post processing algorithms on top of PCLOUD

resources, termed Processing on Demand, and at its execution

time, it sandboxes such codes for safe execution [28] where

the resources allocated for those services and sandboxes are

controlled by PCloud’s underlying mechanism.

C. SOUL Engine
SOUL’s realization in Android, the SOUL Engine, interacts

with apps via SOUL APIs. Invocations of Engine APIs trigger

additional important functionality in cooperation with the

SOUL Core on edge clouds as follows: (i) Access control–

the Engine initiates a process for each app’s degrees of access

to desired sensors. (ii) Orchestrated data movement at the

granularity of a SOUL aggregate, it creates SOUL Streams
that ultimately link SOUL to apps. (iii) Externalization–it runs

the Processing-on-Demand (PoD) functions needed to interact

with edge clouds, when present. If no edge cloud is available,

the Engine runs the app’s SOUL aggregates on available local

resources on the device. (iv) Runtime mapping–SOUL permits

automated methods to map physical sensors, actuators and

services to SOUL aggregates with runtime remapping based on

changes in user context. This eliminates app’ burden required

to explicitly track and response such changes in real time.

1) Discovering Edge Clouds for SOUL Engine
For access to edge cloud resources, SOUL seeks to discover

an edge cloud whenever the user unlocks the screen on her

Android device. To reduce overheads, our current implemen-

tation limits the frequency of such discovery actions to once

every five minutes. Unlocking the screen triggers an interaction

with a directory service located on a remote cloud (currently,

an Amazon EC2 node) that returns to the device a set of

edge clouds available to the user in her current environment.

Which resources are returned depends on user context and her

social relationships or more generally, on the access controls

associated with the user requesting an access to a sensor. The

reference monitor implements these access controls.

2) SOUL Streams
Apps should be able to use SOUL aggregates for sensors

much like current Android apps use ones on a device, thus

preserving the Android sensor programming model. To do so,

SOUL streams are placed below the layer implementing the

Android sensor programming model. Upon a request from

an app, a SOUL stream is created to connect the Engine

with the SOUL core. It attempts to meet Android-defined

constraints on desired sensor data rates and delays, and within

those constraints, it also seeks to obtain improved performance

by optimizing this stream using sensor data batching. The

outcome is that battery-operated mobile devices are shielded

from some of the potential overheads of using physical sensors

(e.g., battery drain discussed in Section VI-B); instead, these

overheads are shifted to the SOUL engine’s resources running

the datastore on an edge cloud.

3) Programming Model – SOUL Activities
The SOUL Activity class is a Java abstract class for apps

to use SOUL aggregates, for example, to define its SOUL

aggregates–via its compose method, and to finalize SOUL

aggregate processing–via its trigger method. The remapping
method can define the SOUL aggregates that need to dynam-

ically remap their sensors and actuators to newly available

physical ones without additional app intervention. The SOUL

Activity class complies with the current sensor APIs of An-

droid because it is implemented as a wrapper of Android’s sen-

sor framework, SensorEventListener. Its detail appears in the

SOUL source code available at https://github.com/gtpcloud/

SOUL.git.

V. SELECT IMPLEMENTATION DETAIL

To realize the design principles of SOUL, our implemen-

tation must be (i) backwards compatible–allowing existing

apps to continue to interact with their sensors as well as

virtual sensors in SOUL; (ii) transparent–permitting the use

of sensors regardless of their physical location; (iii) portable–

allowing SOUL aggregates to run on any of the variety of

edge cloud infrastructures; and (iv) controlled–enforcing well-

defined access controls for the invokers of SOUL aggregates.

We obtain these properties as follows. First, SOUL ag-

gregates provide legacy apps with the aforementioned sensor

illusions. To do so, such apps can still benefit from being able

to use both on-device and ambient sensors. Second, logically

decoupled sensors enable apps to construct entirely new types

of sensors from physical ones. Third, we demonstrate porta-

bility by realizing SOUL on diverse devices (Galaxy Prevail,

S3, S4, Tab 3, and Nexus 4, 7), and by providing the edge

cloud translation layer with which SOUL services can run

on the PCLOUD or elsewhere (e.g., Cloudlet [21]). Finally,

controlling sensor use is ensured by an access control service

in SOUL.

A. SOUL Core on Edge Clouds
The SOUL Core implements its sensor datastore, access

control mechanism backed by the reference monitor along

with the policy generator, and resource manager to take sensor

management followed by sensor-data processing from mobile

devices on top of an edge cloud. The SOUL Core is built on

PCLOUD to access distributed resources including computing

capabilities, sensors, and actuators via a clean and high-level

abstraction.

1) Edge Cloud Translation Layer
The edge cloud translation layer allows SOUL to use

a different edge cloud infrastructure other than the current
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PCLOUD . Since the translation layer hides complexity in the

underlying system, the type of underlying edge infrastructure

(i.e., Docker vs. QEMU in cloudlet) is not relevant when

integrating with SOUL.

For instance, the SOUL Core would run on top of Cloudlets

with cognitive services [37] via the translation layer, and

the datastore would easily replace its backend DB, currently

OpenTSDB with BOLT [38].

The translation layer also provides the single point of

contact needed for initiating and finalizing SOUL execution,

on the device or elsewhere. The PCLOUD infrastructure with

the layer provides the sandboxed environments–on ambient de-

vices and/or the remote cloud–for running individual services

of SOUL.

2) Access Control to Mitigate Privacy Risks
To mitigate privacy and security concerns when users share

sensors, the reference monitor in SOUL enforces access con-

trol policies, which are inherent to how SOUL aggregates

are used. Access controls enforced by the reference monitor
begin with mutual authentication activities between the mobile

device user and any other users (e.g., the sensor owner) with

whom she might want to interact. In our implementation, those

activities involve a Facebook-based app installed by the user

on her Facebook account and a server acting as a Certificate

Authority (CA) with an X.509-based public key infrastructure.

The reference monitor determines what access policies (if

any) exist for the user, i.e., the invoker of a specific resource.

This determination is carried out by the policy generator,

which (i) looks up the social ties shown in Facebook between

the user (i.e., the invoker) and the other person involved

(e.g., the sensor owner),and (ii) checks for additional context

information available for that user. An example of such context

is an event, noted in the user’s event calendar, where the user

is a scheduled participant in a shared meeting with the owner.

The generated policy, i.e., the access policy to be applied,

then, is based on social tie (e.g., how well do I know the

owner?) and on context (e.g., are we both attending the same

scheduled event?). The policy determined in this fashion is

enforced with every access by the invoker to the resources of

an edge cloud. The outcome is fine-grained access control in

which different access policies are enforced for every invoker.

Policy enforcement is efficient, as the reference monitor issues

an access token to the invoker based on a given policy, and

then, every resource request uses that access token when

interacting with access control (which checks the token). An

additional optimization implemented in the current system

skips such explicit checks for new requests made by a user

for the same resource within 1 minute of previous requests.

The current implementation uses social tie prediction vari-

ables proposed by [32], but we can easily append others. For

the policy generator to create policy templates from those vari-

ables, we cluster the friends of the user, who owns sensors, on

Facebook into different groups using the Jenks algorithm [39].

Each group is mapped to a different policy template, and these

groupings (and policy template) are presented to the owner

as assistance in access control policy. Context is managed

similarly: the policy generator again defines a suitable policy

template and makes it available for inspection and possible

modification by the owner. To capture where a request is made,

the current SOUL engine on mobile devices should report

its location from a GPS sensor on devices when it requests

to connect an edge cloud belonging to others. Beyond using

location data, current apps with SOUL use context determined

by event pages on Facebook and the Google Calendar. An

access token resulting from this context information, which

is called a guest token, is required to renew every 2 hours.

Further, while such context can be checked rapidly, estimation

of social ties from prediction variables is slow, in part because

it must walk through and collect all social traces on the

owner’s Facebook account (to understand the owner’s ties to

other users). As a result, the policy generator only periodically

updates its social tie estimates, according to settings controlled

by the owner, but captures context information immediately

and on demand. User-defined policies are stored locally.

Access Control via glanceSensor: As discussed in Sec-

tion IV-B1, when a mobile app invokes the openSensor call

to access shared sensors, the reference monitor returns a

capability token to the app, which indicates ‘no access’,

‘glance’, or ‘read’. ‘No access’ simply rejects such an access.

The read capability allows the app to use the SOUL engine

API, getSensor operation to fully customize requests (e.g., the

time windows, filters, and resolution for data). glanceSensor
with the glace capability is a very limited version of the

getSensor call, which can see only the sensor data that meets

the conditions imposed by the owner-defined policy.

3) Sensor Management and Processing
To permit post-processing methods for sensor data to run

anywhere, on the mobile device and/or on remote resources,

the resource manager in the SOUL core can draw on PCLOUD

resources to offload such processing on demand. Toward this

end, an app defines a Processing-on-Demand (PoD) instance,

consisting of algorithm written in JavaScript and metadata

defining PoD inputs and outputs. To run PoD code, the

resource manager uses sandboxes on PCLOUD resources to

better isolate and control their activities. The sandbox’s run-

time executes PoD code and communicates with the datastore

to get and put appropriate sensor data. Processing results are

again delivered to the app in form of a SOUL aggregate. SOUL

relies on a virtual machine created by the Xen hypervisor for

its PoD. PCLOUD controls the lifecycle of each sandbox from

its creation to termination.

4) Sensor Datastore
The SOUL Datastore uses OpenTSDB [40] as its underlying

backend database. More important, however, are its actions

manipulating sensor data including batching and reconfigura-

tion as follows.

Reconfiguration. The reconfiguration service implemented by

the SOUL engine (i) detects changes in the user’s context,

whereupon (ii) it triggers remapping between sensor streams

and corresponding virtual sensors. Specifically, the current

implementation detects a location change, whereupon the

reconfiguration service sends a reconfiguration request to the
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Fig. 2: SOUL’s implementation in Android. The colored boxes

indicate SOUL’s modules added to Android.

SOUL Core. This gives rise to a new sensor stream and

ultimately, to different virtual sensor data exposed to the app.

The outcome is a complete elimination of app involvement

when user context is changed.

Batching. To efficiently transport sensor data across the net-

work, rather than sending individual sensor records, data is

batched based on two criteria: (i) the app-defined sampling rate

constitutes a constraint applied to SOUL’s batching method,

and (ii) MTU determines batch size under that constraint,

where batch size simply represents the number of records

packed into a single batch. In this fashion, SOUL adheres to

common Android practice, yet obtains improved performance

compared to per record network transfers.

B. SOUL Engine
The sensor framework in Android can be divided into three

layers: (i) Java layer, (ii) system layer, and (iii) HAL. The

Java layer interacts with apps, the system layer controls built-

in sensors via HAL, and finally, HAL talks to the kernel-

space device drivers. To transparently support existing apps,

SOUL’s implementation operates at all three layers, and for

remote ambient sensors, SOUL does not make any assumption

regarding how they connects to a device. SOUL’s per-layer

functionality is outlined next.

1) Hardware Abstraction Layer Approach
Android’s HAL mandates that when Android introduces a

new sensor type that can replace an OEM-define sensor type,

the OEM must use the official sensor type and stringType

on versions of the HAL [41]. Therefore, HAL is a seem-

ingly attractive layer for implementing SOUL-like solutions.

Unfortunately, there are several drawbacks. First, HAL itself

has become blackbox in most Android devices, except for a

handful of Google reference devices. This is because device

manufacturers do not publish their HAL source codes. Second,

HAL no longer provides an abstraction of all sensors on

a devices because of fragmentation in the Android sensor

ecosystem. As a result, apps must manually interact with

all individual sensors, resulting in lack of portability and

unnecessary overhead.

2) Java-layer approach
Recent work [42], [43] use the Java application layer in An-

droid to export physically attached (e.g., via USB connections)

or Bluetooth-connected external sensors. This may help apps

Name Hardware/Role

Camera Nodes Exynos 5420 and AMD E450
Speaker, Monitor A/B at room A/B respectively

EC2 m3.large (Cloud resource)
PCloud Resources Intel i5, i7 & Core Duo

User’s Device Galaxy S4 with Kitkat(CM11)

TABLE II: SOUL Testbed Setting

access on- and off-device sensors, but they must use such new

SDKs, without support for the existing apps.

3) Multi-layer Approach in SOUL
Lessons from the above approaches lead us to a multi-layer

approach that spans Android’s system service and application

framework, shown in Figure 2. This multi-layer approach

supports legacy apps and permits new apps written in our

API to fully leverage SOUL. We use (i) sensor list, (ii) sensor
events, and (iii) data about receivers in each layer of the sensor

framework.

getSensorList in the system layer (JNI): Each Android device

creates a ‘list’ of its native sensors at boot time. Utilizing this

list, we load both native and dummy sensors into SensorDevice
at boot time, later and on demand replacing those dummy

sensors with SOUL-aggregate-based illusions of sensors.

SensorEvent in the system layer (Java): In Android, apps

using on-device sensors need to implement SensorEventLis-
tener to create SensorEventConnection and enable hardware

sensors.Since SOUL bypasses the opaque event-related part

in HAL, we require a mechanism to generate events to trigger

SensorEventConnection on behalf of HAL. Our implementa-

tion uses any existing sensor (currently a light sensor) as an

event ‘generator’ for the rate at which the fastest sensor is

updated. This allows us to avoid modifying the HAL, yet still

substitute the data in each event with the virtualized sensor

data without additional overhead.

Receiver in the HAL layer: The SOUL Core on the receiver

maintains a queue of Device Handler Number (DHN)s indi-

cating the next sensors to be batched. Upon receiving sensor

data from the SOUL Engine, in the handleEvent method it

substitutes the data in events generated by the light sensor

with incoming data. In this method, we compare DHNs of

batched events and virtual sensorś DHN, and then request an

update via updateSensor(DHN) or updateSensorGroup, which

provides a SensorGroup granularity update. Upon update, the

SensorManager notifies registered listeners to handle a new

SensorEvent via the onSensorChanged method in the listener.

The result is a low-latency SensorGroup granularity update

(shown in Section VI-B).

VI. EXPERIMENTAL EVALUATION

A. Evaluation Setup
SOUL is evaluated with micro benchmarks and with the

prototype apps discussed in Section III-A. Table II describes

our testbed. For evaluations, we set up two different physical

spaces, named Room A and Room B, which are equipped with

sensors, actuators, and a monitor and speaker.
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Fig. 3: Measuring elapsed time per layer. SM J and SM S

denote the SensorManager in the Java (JNI) and the system

layer, respectively.

B. Micro Benchmarks
1) Overhead

The overheads of reading SOUL aggregates (vs. physi-

cal sensors) are evaluated with the temperature sensor in a

Samsung Galaxy S4 (GS4). We use a Google Play Store

app, Sensor Readout without any modification of the app to

show SOUL’s backward compatibility. In unmodified Android,

such an access begins with the SensorManager, followed by

HAL and device drivers called SSP in Linux Kernel. SOUL

bypasses the HAL/SSP layer, so that the SensorManager

directly communicates with SOUL. Figure 3 depicts the entry

and exit points of each layer for measurement.

In Figure 4 and Figure 5, an interesting result is that

even when first storing sensor data in the datastore and then

retrieving it via the network, the app-experienced delay in

SOUL is much less than that of the unmodified HAL. Even the

case that SOUL core is on the remote EC2 and the device is on

the relatively slow 3G connection (labeled as EC2-HSPA+),

SOUL shows better response time than the HAL. Figure 4

clearly shows that the time taken in the HAL is dominant in

unmodified Android (99.8% of total time). This result suggests

that the current Android sensor HAL potentially raises huge

overheads when apps access sensors. However, the limited

access to the sensor HAL source code makes it very hard

for us to investigate this overhead further. The HAL delivers

sensor reading data to apps at only four fixed intervals, which

suggests a lack of guarantee in data freshness. The proximity

sensor, for instance, is known to emit a new value every 0.1

seconds or less, but HAL only updates this value to apps every

0.5 seconds. When an edge device reports a sensor data to the

SOUL Core, the datastore follows a conventional time-series

database model to avoid information getting outdated. This

also improves overall latency when moving data from SOUL

to a device. In contrast, the HAL provides the same coarse-

grained delay intervals to all apps.

With SOUL, most time is spent in the network shown in

Figure 5, consequently, with nearby resources (PCloud) ac-

cessed via the 802.11g wireless LAN (WLAN) showing better

performance than when using a remote cloud (EC2) accessed

via T-Mobile’s 3G connection(HSPA+). In Figure 6,the latency

can change greatly if SOUL runs on the remote cloud (EC2)

with the 3G network (HSPA+). Hence, it is desired that SOUL-

like services run on edge-cloud resources with local network

connections.

Fig. 4: Elapsed time:Each layer.

Fig. 5: Elapsed time: On the network vs. inside Android.

Fig. 6: The cumulative distribution functions of latencies based

on resource locations and connections

2) Scalability for Sensor Use
Scalability is evaluated in terms of power consumption

when a test app is running. We measured it on a GS4 with

an increasing number of sensors that the test app uses (up to

100). Power consumption is measured with a Smart Power me-

ter [44]. To see the performance overhead when apps accesses

sensors, we build another test app just reading physical sensors

embedded in the device without doing any post processing. As

in Figure 7, just reading five physical sensors is consuming a

significant amount of CPU performance(from 20%(baseline)

to 64%(Android, 5 Sensors)) resulting in dramatic increasing

of CPU frequency from 600MHz to 1.6GHz. These changes

generated by the Android sensor framework can hardly be

justified when an app interacts with multiple sensors in term

of battery life. In addition to Figure 7, Figure 8(a) indicates

almost constant power consumption in the SOUL case, even

with increasing numbers of sensors up to 100, with the

SOUL aggregate consuming less power than when a single

sensor is accessed in unmodified Android (Ref in the figure).

Latency improvements are due in part because of the ‘batch’

optimization (see Section IV-B3). Figure 8(b) shows ‘batch’ing

gains of up to 88% in terms of latency, which results from

the optimized batch_size when the Datastore constructs

a sensor stream. Note that batch_size are constrained by

both end user app requirements, a delay value, and the network

MTU.

C. Access Control – Dynamic Authorization
To evaluate performance of our access control method, a

sample Facebook account is used to measure social ties from

2675 postings with 3458 comments and 2270 likes. For the
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Fig. 7: The CPU overhead in Android vs. SOUL

Fig. 8: (a) Power consumption as the number of sensors in-

creases, and (b) Average latency seen by the app with batching.

The Ref shows the result from one sensor in unmodified

Android.

Fig. 9: Evaluation of social tie model

authentication purpose, our trust key server is deployed at an

Amazon EC2 m3.medium instance.

Figure 9 shows the strengths of those ties and the clustering

of the groups for access policy templates based on those ties.

In this case, this account has 121 friends on Facebook, and

the policy generator sorts them into three groups based on the

strength of the tie. If someone falls into a proper group, the

policy generator suggests a policy generated from template

policies to the account user, and then the user may accept,

customize or reject it.

Table III shows how quickly a policy is offered by the

policy generator. The social-tie based policy is created very

quickly because the policy generator caches the estimation

results from the model at a local edge cloud, which means the

policy generator in SOUL does not evaluate the model every

time a request comes because its execution time is too long to

use it in realtime. With the test settings, it takes 453 minutes

since evaluating every single social interactions on Facebook

to accurately generate these policies is a demanding task, its

weekly recomputed results are cached and reused, with the

assumption that social ties are unlikely to change over that

time period.

To measure the overhead of a policy enforcement by the ref-

erence monitor, we build an Android app using SOUL, which

simply tries to create and access an aggregate with a different

ownership. Once an access to the aggregate is granted, the app

TABLE III: The elapsed time to create a policy

Source Time in milliseconds

Social Tie-based 6
Context-based
– Facebook Event 123
– Google Calendar 90

TABLE IV: The elapsed time for access control

Tasks Time in ms

Mutual authentication 54.8
Access invocation
– (a) Request an access 8.5
– (b) Read a value 20.3
– (c) Finalize the acess 9.7

tries to read values from the sensor. In Table IV, other than

20.3 ms (Read a value) is additional processing time for access

control conducted by SOUL. Mutual authentication happens

just once, and if the app reads more data, this overhead can

easily be amortized.

D. Supporting Existing Apps
Backward compatibility is evaluated by comparing sensor

accesses by unmodified apps with those using SOUL. Recall

that even unmodified apps can benefit from SOUL’s ability

to provide access to both on-device and remote sensors via

SOUL aggregates. We verify the backward compatibility of

the SOUL abstractions by checking whether the existing

apps in the Google Play Store can transparently access the

physical sensors they already use, via illusions given by SOUL

aggregates, an implicit bonus of such compatibility being that

such sensors can be local or remote. Figure 10 is a screenshot

of the Sensor Readout app able to transparently interact with

on-device–the first three–and remote sensors.

E. Augmenting Existing Apps
The ‘Everything Follows Me’ service described in Sec-

tion III-A1 provides a seamless media experience when run-

ning the Spotify app. In this evaluation, Android notifications

also work with the this service to deliver notifications to

the nearest user-visible LED. The ‘blackout’ time is 1918.3

milliseconds for the Spotify app and 10.9 milliseconds for

Android notifications. This time is the elapsed time between

the moment that the SOUL’s reconfiguration notifies the user’s

context change to the service after detecting the change of the

user’s location, and the moment that the services automatically

remaps to available resources in the new location. This remap-

ping happens without user or app’s intervention and for an

unmodified Spotify app and the Android notification service.

F. Processing on Demand
We use the Kalman filter to evaluate SOUL’s PoD feature.

Our test app creates a PoD instance with this Kalman filter

source code written in JavaScript and then SOUL runs the PoD

instance on a sandbox on the SOUL Core. We also run the

same code on the device itself to make a comparison. Figure 12

(a) shows that it takes 1.69 seconds when such injected filter
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Fig. 10: A Screenshot of the Sensor Readout App

code runs in a SOUL sandbox, including all network times,

while it takes 17.64 seconds for the same filter processing to

run on the device. There are associated gains in energy effi-

ciency on the GS4, shown in Figure 12 (b). We counts machine

cycles for each case. the filter runs 26,158,422,002 cycles on

the device whereas 39,541,615 cycles (0.15% compared with

the cycles on the device) on the SOUL sandbox. Reductions in

elapsed time and improved energy efficiency are explained by

the number of CPU-core frequency changes in Figure 12 (a),

which indicates that on-device processing operates all CPU

cores up to their maximum frequency (1.6GHz) for almost

half of the processing time, which is very high compared to

the SOUL case. Table V breaks the execution time into each

task when its PoD instance runs on a sandbox on PCLOUD .

G. Composing SOUL aggregates
The ‘Don’t turn on the screen’ app defines its gesture

aggregate consisting of an ambient and smartphone’s camera,

and its proximity sensor as its aggregate. The aggregate also

includes phone’s speaker as an actuator, and the gesture

recognition service from PCLOUD for its post processing. The

recognition service runs on nearby resources, or on the remote

EC2, based on a decision made by the underlying PCLOUD .

The end user’s request–a report on the current time–is satisfied

via the phone’s speaker. Results are obtained by checking the

current time every second for ten seconds, by either turning

on the screen or via this app. We measure the elapsed time

from the moment that the finger detection service is run to the

moment that the current time is reported, when the recognition

service is run on local edge cloud devices or the remote cloud.

Using local resources on PCloud results in a latency of about

97.4ms while latency with the EC2 remote cloud is 294.5ms

as shown in Figure 11 (a). This result suggests that latency-

sensitive apps may need to run on the edge clouds as long as

the edge provides enough resources to process app’s workload.

We also compare the power and energy consumption of the

device running this app vs. simply activating the screen and

permitting the user to see the time. Figure 11 (b) clearly shows

that this app’s avoidance of the screen dramatically reduces the

device’s energy consumption, by up to 46%.

H. Discussion
In addition to the apps demonstrating SOUL’s utility and

the versatile nature of SOUL aggregates and their use, the

experimental evaluations show that offloading sensor data

(a) Response time to state the current time

(b) The speaking and screen consume 22.14 and 40.94 mWH,

respectively. Each circle shows the moment that a user ac-

knowledges the current time.

Fig. 11: Results of the Don’t turn on the screen app

(a) The elapsed time and CPU frequency changes

(b) Comparison of power consumption

Fig. 12: Results of the app with a Kalman filter

processing (e.g., PoD) from the mobile device has advantages

not only in performance and/or energy consumption, but also

in the delays seen by end users, particularly when PoD can

use nearby computing resources vs. the remote cloud. It also

presents opportunities for creating advanced functionality, like

the gesture aggregate in Section VI-G by SOUL. Furthermore,

with SOUL, even unmodified apps can transparently use

ambient sensors. Lastly, SOUL helps create new opportunities

for innovative sensing, including via sensor composition and

the ability to run potentially complex processing methods on

resources beyond a single device.
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TABLE V: PoD–Elapsed Time per task with 95% interval

Task microsec. 95%

PoD on PCLOUD 946385
– (a) Access to Datastore 18780 6708
– (b) Access Control 1530 539
– (c) Execution in Sandbox 925065 6320

Android Stack 44013 1462

Sensor stream over Network 28824 791

VII. RELATED WORK

Edge Cloud Infrastructures. SOUL can be built on any edge

cloud infrastructures that include [4], [20], [21], [45]. In fact,

the SOUL approach is somewhat similar to recent work like

BOLT [38] and Gabriel [37], both of which extend underlying

cloud infrastructures with new functionalities.

Sensors in Android. The Android sensor framework has

recently included a Sensor Hub [46] component. This is an

evolution of the original software abstraction, to a dedicated

low-power companion microprocessor which records and pre-

processes sensor data instead of the power-hungry application

processor. This approach reduces power consumption, but does

not address all the solutions provided by SOUL because the

microprocessor is not capable of the full range of real-time

data processing algorithms required by applications. Recent

work [23], [42], [43], [47] has suggested extensions for

access to off-device sensors. ODK [42] proposes a mechanism

using Kernel-level device drivers to access external sensors

physically connected via USB or Bluetooth. BraceForce [43]

and RTdroid [23] also do so, but because they introduce

custom SDKs for interacting with external sensors, they do not

support legacy apps written with the standard Android SDK. In

addition, access control in RTDroid [23] is similar to what is

provided by SOUL, but without SOUL’s policy level support.

Similar to SOUL, Metis [48] opportunistically offloads sensing

tasks to fixed sensors, yet does not support virtual sensor

fusions, or actuator controls as SOUL Core and GroupBy

operation do. Seemon [49] introduces energy-efficient context

monitoring query like SOUL batching operation but lacks

offloading mechanisms to leverage nearby processing power.

Programming Models. MiLAN [50] allows applications to

define QoS properties for their sensing requirements, based

on which it decides on suitable network and sensors con-

figurations. Such techniques may be useful to further extend

SOUL’s policies that allocate appropriate edge, remote, and

device-level resources to SOUL aggregates.

TeenyLIME [51] proposes a high level abstraction for data

sharing among one-hop neighboring devices, but unlike SOUL

aggregates, it does not fully leverage all available ambient and

cloud resources. SOUL and GSN [15] share the motivation of

virtualized sensors, but while GSN focuses on an infrastructure

for sensor network deployment and distributed query process-

ing, SOUL provides to mobile apps new functionality that

permits them to transparently and uniformly access sensors,

actuators, and services.

Similar to SOUL, MobileHub [52] proposes automatic

rewriting mechanisms for mobile apps to leverage sensor hub

on mobile devices. However, it relies on physically present

sensors whereas SOUL interpolates virtual sensors as well.

Recent RFC 7252, 7390, and 7641 propose the sensor-

oriented protocol and group-granularity operands like SOUL

GroupBy. However, the proposed group operation, that re-

quires continuous searching for all nodes or using infinite

hierarchical naming, imposes a large overhead, whereas SOUL

avoids these burdens by providing generic interfaces and even

potential extension by developers.

OpenIoT [53] is a middleware for virtual sensor. It, however,

does not incoperate the most sensor-rich device, mobile device,

and lacks access control models.

Access Control and Privacy in Sensing. SenSocial [54]

combines user activities on such services with sensing the

physical context, using the user’s mobile devices in a privacy-

conserving manner. Hence, applications can easily capture

both user context and sensed data. SOUL adopts elements of

this approach. The anonymity mechanisms in [55], [26] could

be used to implement enriched SOUL’s ‘glance’ calls, or one

could use the access control-based privacy mechanism in [35].

Liu [25] suggests a new abstraction for trusted sensors with

virtualization and hardware support. Obscuring data as done in

statistical databases could be used to improve the Datastore.

VIII. CONCLUSIONS AND FUTURE WORK

SOUL addresses issues with sensors and sensor processing

ecosystem using the capabilities of edge clouds. First, it shields

applications from today’s diverse sensors and vendor-specific

interfaces, thus making it easier for apps to scale their sensor

use. Second, SOUL’s ability to perform sensor processing on

external resources, make possible complex sensor processing

and integration activities not limited by an individual smart-

phone’s resource constraints. Last, apps must dynamically

acquire the rights to access and interact with sensors. Thus,

SOUL provides apps with required runtime permissions.

A possible future work will demonstrate the portability to

other edge cloud systems and explore a seamless hand-off

when mobile devices move around.
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