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Today’s vehicles are sensor-rich but computation-poor.
To better assist drivers, current vehicles have a large
number of diverse sensors; for instance, the 2017 Ford GT
has over 50 built-in cameras and sensors [2] that can de-
termine speed, location, humidity, occupancy, mechanical
positioning, and a wealth of other data. However, modern
vehicles have little general-purpose computing capacity
due to cost, maintenance, and survivability concerns. For
instance, vehicle manufacturers aim for vehicles to last for
20 years, and any general-purpose computing platforms
would become obsolete or need maintenance many times
during that lifespan.

Emerging vehicular applications often require substan-
tial computation to process rich sensor data; for example,
a parking spot locator may need to process video from
an external camera. Since the needed computation is not
available in the vehicle, such applications offload the
processing of sensor data to other platforms. Two current
approaches are offloading computation to the cloud (e.g.,
OnStar’s ATOMS [5]) and offloading computation to
edge mobile devices such as smartphones within the
vehicle (e.g., AppLink [1]). In the future, edge computing
platforms located in cellular infrastructure or at roadside
hotspots may provide additional locations for hosting
computation. Figure 1 shows these three possibilities.

The challenge in offloading computation over vehicular
sensor data is that response times can vary substantially
due to mobile network quality and unpredictable load
changes on the platforms hosting offloaded computation.
Sensor-rich vehicular applications are usually user-facing,
so providing low response time is vital for a good
consumer experience and minimizing driver distraction.
However, low average response time is not enough;
response times must also be consistent (i.e., the tail
response time should also be low) for a good user
experience [3].

Our proposed solution is to use passive measurement
and historical data to estimate network latency and com-
pute times for offloaded sensor processing in vehicular
applications. Based on these measurements, we will select
the cloud, roadside, or mobile phone platform that yields
the fastest predicted response time.

However, network predictions are inherently uncertain

Fig. 1: Sensor data processing is offloaded to mobile, roadside, and
cloud platforms. Offloaded computation may need additional data from

cloud storage.

in vehicular environments due to high rates of mobility. In
addition, edge devices on the road and in the vehicle can
have unpredictable load spikes due to limited compute
capacity and competing demand from other applications
and nearby vehicles (in the case of roadside devices).
Therefore, we propose to selectively employ redundancy
to reduce the response time tail. When response time
predictions have a high degree of uncertainty, we will
replicate offloaded computation on multiple platforms
and use the fastest response. In addition, there may be
multiple mobile network paths for data transmission;
e.g., we can use WiFi or cellular networks to reach the
cloud, and an edge device may use multiple networks to
retrieve data from cloud storage. Normally, we will send
requests and responses over the fastest network; however,
when estimates of network latency are uncertain, we will
also replicate data transmission by sending requests over
multiple networks to reduce tail response time.

Selecting locations for sensor-data processing: A pri-
mary goal for offloading vehicular sensor-data processing
is minimizing the application response time. As with prior
offloading systems [4], we predict application latency
by first estimating the supply and demand of network
and computational resources and then calculating the
estimated time for each potential offload site to produce
a response. We can then run the computation on the site
with the lowest predicted response time.

However, prior prediction mechanisms for offload



have heavily relied on measurements of network [10]
and computation load [4]. This approach works well if
measurements have been taken recently and the measured
resources are relatively stable. However, in vehicular
scenarios, sensor-processing may be relatively infrequent,
so past measurements may be too stale. Also, high rates
of mobility may lead to rapid changes in network quality
or the set of edge devices located near the vehicle.

Therefore, we are using a hybrid approach that com-
bines passive measurements with crowd-sourced historical
data collected over a long time period. When measure-
ments are stale, the hybrid approach will rely more
on crowd-sourced historical data; when measurements
are recent, they will be the primary contributor to
the predictions. The hybrid approach also affects the
confidence in the predictions; recent measurements are
likely to be more accurate than historical predictions.

Offload redundancy: Given that vehicular scenarios
are likely to exhibit much more variability in environmen-
tal conditions than scenarios with little or no mobility, we
expect that the offload site selections based on estimates
of those conditions will be incorrect more often. Missed
predictions mean that the latency experienced by the user
may be quite high since the computation is running at
the wrong site. This can be a substantial contributor to
tail latency.

We plan to selectively employ redundancy in offloading
to reduce tail latency [8]. Rather than employing redun-
dancy at all times as is done in system like Tango [6], we
will consider the uncertainty in our underlying network
and computation load predictions. If we are relatively
confident in those predictions (e.g., because they are
based on recent measurements), we will simply select
the best predicted site to offload computation. If we are
not confident in those predictions (e.g., because they are
based on historical observations with high variance), we
may choose to run the offloaded computation on multiple
sites and use results from the fastest site to respond.

Figure 2 shows the potential benefit of this approach.
The rightmost two lines shows the CDF of the latency
distribution for two potential offloading sites. Choosing
the best site moves the expected response time from the
rightmost line to the middle one. However, redundant
execution improves the expected response time even
further, as shown by the leftmost line in the graph.
Importantly, the 99% response time improves by 200ms.

However, redundancy comes at a cost: for example,
extra cellular data usage or mobile device energy con-
sumption. Thus, redundancy should only be employed
when the expected benefits outweigh those costs.

Network redundancy: Network redundancy can also
improve tail response times. The vehicle may have diverse
connectivity options (e.g., Wifi, cellular, and Bluetooth)
for communicating with cloud and edge devices, and

Fig. 2: Latency CDF for three potential offload decisions

those devices may have similar diverse options for
communicating with cloud data sources. When multiple
networks are available, sending data over multiple paths
can reduce overall service response time.

Multipath TCP (MPTCP), in a recently proposed and
standardized variant of TCP [7, 11] that stripes data over
multiple subflows, which are connections over different
paths between two endpoints. We are modifying MPTCP
to selectively employ redundant transmission over such
subflows with the goal of reducing service response
time. By calculating the uncertainty in each subflow
latency measurement, we determine the predicted benefit
of redundant transmission. When that benefit exceeds
the cost of using additional network resources, we send
data over multiple subflows and the receiver discards any
redundant data that it receives.

Our initial design supports unmodified applications by
inferring that small transmissions are likely to be latency-
sensitive and will benefit from redundancy. Larger trans-
missions MPTCP striping as normal. Applications that
are modified to provide intentions [9] about which data
is latency-sensitive can receive more targeted benefits.
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