
Poster: Accelerating Applications in the Fast-moving Devices
with Proactive Provisioning

HyunJong Lee†, Hee Won Lee§, Moo-Ryong Ra§, Yu Xiang§, and Jason Flinn†
† University of Michigan § AT&T Labs - Research

An increasing number of applications that leverage built-in sensors
is hosted on new types of devices such as vehicles and drones. Exam-
ple applications are augmented reality Head-Up-Display in a con-
nected car [2], scout drone that chases a target suspect among the
crowd [3], autonomous fleet drones [1], and so on. These futuristic
applications in various genres of devices are latency-sensitive and
require a significant computation power to process a tremendous
amount of data from built-in sensors [8]. However, the capabilities
of processors shipped with these devices are limited. A natural
solution is offloading to an edge surrogate,1 running on a ‘nearby’
edge-cloud that offers more computation capacity at low latency.

The key to retain low latency in edge-cloud is placing the sur-
rogate in the nearest edge node. If an end-device moves to a new
location and connects to a new nearby edge node while the corre-
sponding surrogate stays at the previous edge node, user-perceiving
latency increases to communicate over WAN [9, 10]. Provisioning
the surrogate from one to another edge nodes requires migrating
the state as applications are often stateful.

Prior systems [5, 6, 12] have thoroughly investigated just-in-time
provisioning mechanisms. They reduce the total provisioning time
in order to migrate and resume a surrogate instantenously when the
end-device associates with a new edge node to retain low latency.
Because they target applications hosted on devices that are mostly
used in stationary or slow-moving scenarios (e.g., smartphones,
tablets), they passively migrate a surrogate’s state on demand (e.g.,
watching VR video at home and later on, resuming to watch at
the airport). Thus, prior systems primarily focus on reducing the
transfer size since the size of a surrogate’s state dictates the total
provisioning time. For applications in those devices, the downtime –
an application becomes unresponsive – has negligible effect on user-
experience; applications in fast-moving devices should consistently
deliver low latency for a good user-experience. Hence, both overall
latency and downtime have significant impact on user-exprience.

Our proposed solution to reducing both overall latency and
downtime for applications in the fast-moving devices is by proac-
tively provisioning the state of an actively running surrogate from
current to new edge nodes that are predicted to associate in the
near future by end-device. Rather than migrating the state after
end-device switches to an edge node, i.e., just-in-time, as done by
1A surrogate is a virtual machine (VM) or container that executes an application’s
offloaded computation on behalf.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6661-8/19/06.
https://doi.org/10.1145/3307334.3328649

Figure 1: Interaction between various types of devices and
edge-clouds located at roadside cellular towers and regional
gateway office.

prior systems [5, 6, 12], we will make predictions on next edge
nodes and proatively provision forecasted next nodes while the
end-device is still using the surrogate in the current edge node.
Since the provisioning stage takes a place before an end-device
switches to a next node and the state of the surrogate is already
present and is ready to resume on the node that the end-device
moves onto, proactive provisioning is effective at masking the state
transfer time and reducing the downtime.

A proactive provisioning system must make predictions in many
variables such as next edge node, total provisioning time, expected
latency improvement, unlike previous just-in-time systems [5, 6, 12]
that passively migrate on-demand when an end-device associates
with a new edge node. With inaccurate prediction, proactive provi-
sioning may consume extra resources for no performance improve-
ment. For instance, when an end-device deviates from the predicted
route and associates with an unprovisioned edge node, not only the
application experiences high downtime to provision on-demand
but resources previously used to provision (e.g., bandwidth, storage)
are wasted. So previous edge provisioning systems either provision
just-in-time [5, 6, 12] or target specific use-cases [7, 11, 13].

Worse, each prior system implements its own provisioning deci-
sion logic that targets specific performance metrics. Table 1 summa-
rizes the control domains covered by each of them. We argue that
the control plane should be decoupled from mechanisms to build a
pragrmatic and flexible edge provisioning system. Furthermore, to
balance performance improvement and resource usage, a system
requires an intelligent provisioning controller that systematically
incorporates various dimensions (i.e., where, when, and how) at
run-time to make the provisioning decision proactively. Figure 1
shows the control plane decoupled from existing mechanism planes.

Prediction of the future ‘nearby’ edge nodes: A primary
goal for migrating the surrogate to a nearby edge node is to retain
low latency by alleviating network tail latency and jitter. When
devices move to a new location, we should make a provisioning
decision. For applications hosted on devices that often stay with

https://doi.org/10.1145/3307334.3328649


System Target Target Controls
Performance Metric Use-cases where when whom how

JIT [6] Total provisioning time International traveler stepping off his flight ✗ ✗ ✗ ✓

VM Handoff [5] Total migration time Unexpected flash crowd may overload small cloudlet ✗ ✗ ✗ ✓

Service Handoff [12] Total transfer time Container migration with thin top writable layer ✗ ✗ ✗ ✓

Steel [13] Operation cost Hybrid cloud to minimize monetrary cost ✓ ✗ ✓ ✗

Paradrop [11] Resource utilization IoT devices that require computation power ✓ ✗ ✓ ✗

Table 1: Comparison of prior edge provisioning systems with their control domain.

an edge node for a long period of time, the best strategy is always
migrating to the nearest edge node since latency improvement is
larger than the cost of migrating. For applications hosted on fast-
moving devices, however, this strategy can be very costly since
these devices rapidly move in and out of edge nodes’ coverage and
often associate with an edge node for a short period of time. Thus,
for these devices, selectively provisioning edge nodes, which can
improve application-perceiving latency is crucial to avoid resource
waste.

Intuitively, proactive provisioning requires high prediction ac-
curacy for the future location of devices to find which edge node
the devices will encounter in the future. While the context-based
approach [14] for predicting next edge nodes located in cellular tow-
ers offers a good accuracy, it requires building a specific prediction
model for each device and use-case because amobility pattern varies
by types of a device and user’s context. So, rather than considering
the physical location of edge nodes, we plan to estimate end-to-end
latency between current and predicted edge nodes located along the
forecasted projectory that we will infer from previous and current
location data at run-time. Then, we can selectively provision edge
nodes that may cause high user-pereceiving latency when commu-
nicated over WAN. This strategy allows us to skip provisioning
edge nodes that improve latency at the margin.

Making a prediction at run-time inherently comes at the uncer-
tainty that may degrade application performance. So, we plan to
explicitly incorporate uncertianity in our next edge node prediction.
Rather than proactively provisioning one edge node at a time, we
will compute the confidence for each candidate nodes and explicitly
calculate expected latency gain and resource usage. Then, we can
redundantly provision ones that have the expected benefit that
surpasses the cost to proactively provision.

When to start provisioning: Given that applications in fast-
moving devices are constantly used, starting to transfer the surro-
gate’s state as early as application starts offers both low latency and
low downtime. Yet, throughout provisioning stage, the surrogate
at current edge node is actively used and the surrogate’s state con-
tinues to change. So, it makes previously transferred state useless
and requires re-transmitting the updated state until the end-device
switches to a next provisioned edge node.

Instead, we will estimate the total provisioning time and predict
the time left untill moving to a candidate edge node. In this way, we
can avoid resource waste by starting to provision as late as possible
so that the stage completes at the same time the end-device switches
to the provisioned edge node. Figure 2 shows the potential benefit
of this approach by starting to provision at different time periods
ahead, when running AR Heads-Up-Display application [2] for 10
minutes. Two leftmost lines are employing proactive provisioning

Figure 2: Latency CDF for starting proactive provisioning at
three different time points ahead. Downtime is equal to the
distribution after 350ms.

and the rightmost line is a result of just-in-itme provisioning. While
the leftmost line improves overall application-perceiving latency
and reduces downtime the most, it also cosumes resources the most.
On the other hand, the rightmost line results in high downtime
but consumes minimal resources. Our initial design systematically
explores the tradeoff between expected latency improvement and
excessive resource usage by controlling where, when, and how
dimension at run-time to support efficient proative provisioning
on top of prior systems [4–6] as a controller module.

REFERENCES
[1] Intel drone light show breaks guinness world records title at olympic winter games

pyeongchang 2018. https://tinyurl.com/y4xbwv2y.
[2] Porsche, Hyundai invest in WayRay to make augmented-reality HUDs. https://

www.cnet.com/roadshow/news/wayray-augmented-reality-hud-investment.
[3] These police drones are watching you. https://www.pogo.org/analysis/2018/09/these-police-

drones-are-watching-you/.
[4] K. Ha, Y. Abe, Z. Chen,W. Hu, B. Amos, P. Pillai, andM. Satyanarayanan. Adaptive VMhandoff

across cloudlets. Technical report CMU-cs-15-113, 2015.
[5] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya, P. Pillai, and M. Satya-

narayanan. You can teach elephants to dance: Agile vm handoff for edge computing. In
Proceedings of the 2nd IEEE/ACM Symposium on Edge Computing (SEC), 2017.

[6] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and M. Satyanarayanan. The im-
pact of mobile multimedia applications on data center consolidation. In Proceedings of IEEE
International Conference on Cloud Engineering (IC2E), pages 166–176, 2013.

[7] M. Jang, H. Lee, K. Schwan, and K. Bhardwaj. SOUL: an edge-cloud system for mobile applica-
tions in a sensor-rich world. In Proceedings of the 1st IEEE/ACM Symposium on Edge Computing
(SEC), 2016.

[8] H. Lee and J. Flinn. Poster abstract: Reducing tail response time of vehicular applications. In
Proceedings of the 1st IEEE/ACM Symposium on Edge Computing (SEC), 2016.

[9] H. Lee and J. Flinn. Poster: Redundancy aided vehicular networking. In Proceedings of the 15th
International Conference on Mobile Systems, Applications and Services (MobiSys), 2017.

[10] H. Lee, J. Flinn, and B. Tonshal. RAVEN: Improving interactive latency for the connected
car. In Proceedings of the 24th International Conference on Mobile Computing and Networking
(MobiCom), 2018.

[11] P. Liu, D. Willis, and S. Banerjee. Paradrop: Enabling lightweight multi-tenancy at the net-
work’s extreme edge. In Proceedings of the 1st IEEE/ACM Symposium on Edge Computing (SEC),
2016.

[12] L. Ma, S. Yi, and Q. Li. Efficient service handoff across edge servers via docker container
migration. In Proceedings of the 2nd IEEE/ACM Symposium on Edge Computing (SEC), 2017.

[13] S. A. Noghabi, J. Kolb, P. Bodik, and E. Cuervo. Steel: Simplified development and deployment
of edge-cloud applications. In Proceedings of the 10th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), 2018.

[14] J. Paek, K.-H. Kim, J. P. Singh, and R. Govindan. Energy-efficient positioning for smartphones
using Cell-ID sequence matching. In Proceedings of the 9th International Conference on Mobile
Systems, Applications and Services (MobiSys), 2011.

https://tinyurl.com/y4xbwv2y
https://www.cnet.com/roadshow/news/wayray-augmented-reality-hud-investment
https://www.cnet.com/roadshow/news/wayray-augmented-reality-hud-investment
https://www.pogo.org/analysis/2018/09/these-police-drones-are-watching-you/
https://www.pogo.org/analysis/2018/09/these-police-drones-are-watching-you/
HyunJong Joseph Lee



	References

